光的波粒二象性
爱因斯坦光子理论重点叙述了光的粒子性。其实所谓的粒子性就是指光的能量具有不连续的特性。它们以普朗克作用量子h,波的频率ν组成能量最小单位,以其整数倍的数值出现在一定局域空间中。除此之外并没有其它的涵义。至此可以说,光具有波粒二象性(wave-particle dualism)。
光子的波动性与粒子性之间的联系为:
1.光子的波动性与粒子性是光子本性在不同的条件下的表现。波动性突出表现在其传播过程中,粒子性则突出表现在物体的电磁辐射与吸收、光子与物质的相互作用中。一般地说,频率越高、波长越短、能量越大的光子其粒子性越显著;而波长越长,能量越低的光子则波动性越显著。值得提出的是,在同一条件下,光子或者表现其粒子性,或者表现其波动性,而不能两者同时都表现出来。
2将描述光子粒子性的e,m,p与描述光子波动性的ν,λ定量地联系起来。这里,起着“桥梁”作用的是普朗克作用量子h。
3.按照波动概念,光强正比于光波振幅的平方。按照粒子概念,光强正比于光子流密度。于是,光波振幅的平方应该与光子流密度成正比。或者说,空间某处光波振幅越大,表示该处光子密度越大,光子到达该处的概率越大。从这个意义上讲,光波是一种“概率波”。它的强度分布描述了光子到达空间各点的概率。
根据费马的最短时原理:光线总会寻找用时最短的路径来通过
在均匀的介质中,无庸质疑两点间直线最短
在不均匀的介质中,光有些介质中速度快,有些速度慢所以光会适当地选择多走一些速度快的介质,少走一些速度慢的介质,这样就形成了折射
特殊得,如楼上所言,在扭曲的空间中最短的路径也是扭曲的,这就类似于折射,会形成有趣的天文现象“引力透镜”质量极大的天体会在空间中充当一枚凸透镜,把原本看不到的天体通过折射在它的四周对称地承出若干个象来
本文来自网络转载,仅供学习参考!不代表趣典故立场,本站不拥有所有权,不承担相关法律责任。如发现本站有抄袭侵权/违规的内容,请发送邮件至@qq.com进行反馈,一经查实,本站将立刻删除。